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The absorption of wave energy by a three-dimensional 
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(Received 20 May 1980) 

It has been shown (Evans 1976) that the power absorbed by a general, axisymmetric 
body depends solely upon the added-mass and damping coefficients. These coefficients 
are fundamental properties of the body, representing the component of the force on 
the body proportional to the acceleration and velocity of the body respectively in the 
radiation problem, where the body is forced to oscillate in the absence of incoming 
waves. 

I n  the present paper these coefficients are determined by solution of the radiation 
problem, for a mouth-upward cylindrical duct situated on the sea bed and fitted with a 
piston undergoing forced oscillations. The added-mass and damping coefficients are 
then used to study the power absorption properties of the duct when the power take- 
off is modelled by a linear-spring-dashpot system attached to the piston. Curves of the 
added mass, damping coefficients and absorption length (a measure of the power 
absorbed) as functions of wavenumber are presented, for different duct diameters and 
different depths of submergence. 

1. Introduction 
One type of wave-energy absorber under current consideration is the submerged 

device situated on the sea bed. Although moving away from the sea surface towards 
the sea bed will, in general, tend to narrow the absorption length? us. wavenumber 
bandwidth of the device, it  has the advantage of shielding the absorber, to some 
extent, from local storms which could cause damage to a surface device. 

Mouth-upward-facing ducts in two dimensions have been studied by Lighthill 
(1979) using complex analysis to obtain the various important hydrodynamic coeffi- 
cients. Later work by Simon (1981) extends this to three dimensions, where use is 
made of reciprocal relations which exist between the scattering and radiation problems 
in the linear theory, together with an approximate variational technique. 

In  this paper, we shall consider the three-dimensional caseof an upward-facing duct 
of circular cross-section, fitted with a piston, a t  sea-bed level for mathematical 
simplicity, which is attached to a spring-dashpot system as a means of extracting 
energy. Simon uses a similar model, although he treats the infinite depth case where the 
power take-off system is now modelled by an energy extraction coefficient (equivalent 
to a dashpot) applied in the depths of the duct. 

Evans (1976) has shown that the absorption length may be determined from 

t Absorption length = the ratio of energy absorbed by the device to the energy per unit 
frontage of incident wave. 
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FIGURE 1. Mouth-upward duct of radius a, lengt,h 1, in water of depth d .  

knowledge of fundamental properties of the absorbing body: the added-mass and 
damping coefficients. Waves incident upon the device will be diffracted, scattering in 
all directions, and will also set the piston in motion, generating further waves. As 
explained fully in Newman (1977) the velocity potential can thus be decomposed into 
scattering potential, where the piston is held fixed in the presence of incoming waves, 
and a radiation potential, where the piston is forced to oscillate with unit amplitude 
in the absence of incoming waves. The added-mass and damping coefficients may be 
obtained byevaluating the hydrodynamic force on the piston in theradiation problem. 

Hence, to study the absorption length we need only consider the problem of forced 
oscillations of the piston. The method of solution relies on finite depth and is due to 
Garrett, who considered the problems of bottomless harbours (1970) and the wave 
forces on a circular dock (1971). 

Added-mass and damping curves as functions of wavenumber are given in $6. 
For narrow tubes the added-mass coefficient remains fairly constant over the range 
considered, being in general slightly larger than the mass of water in the tube. As the 
tube length increases, it is shown that the absorption-length bandwidth decreases a t  
first before reaching a minimum and increases again as the mouth of the duct 
approaches the surface. It appears that the main advantage of the tube is that it 
reduces the piston motion as the tube length increases. A comparison of these coefi- 
cients is made with those obtained by Simon (1981) in infinite depth. 

The limiting case of an oscillating disk on the sea bed is considered in $ 5 .  This is 
easily solved and provides a useful check on the computation necessary in the above 
case. 

In appendix B the absorption length and amplitude ratio in finite depth are derived 
for a general axisymmetric heaving body. In  the limiting case of infinite depth the 
expressions agree with those obtained by Evans (1976) and, as in the infinite depth 
case, the maximum absorption length obtainable by an axisymmetric heaving body 
is h/27r, where h is the wavelength of the incoming waves which is now dependent on 
the water depth. 
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2. Formulation 
The radiation problem 

A submerged vertical tube of length 1 and circular cross-section of radius a stands on 
the sea bed in water of depth d (d  > 1 ) .  The tube is fitted with a piston,which is forced 
to oscillate with frequency w and unit amplitude. We wish to find the hydrodynamic 
force on the piston and hence the added-mass and damping coefficients of the device. 

Cylindrical polar co-ordinates ( r ,  0, z )  are used with z positive upwards and the 
origin a t  the mean position of the centre of the piston (figure 1 ) .  

Assuming small displacements and irrotational flow, the fluid motion is governed 
by classical linearized water-wave theory. There is no 0 dependence in the problem by 
symmetry, so we may introduce a velocity potential, 

@(r,  z ,  t )  = Re{$(r, z )  e-iwt}, (2.1) 
where, following the usual convention, the time co-ordinate is suppressed. The poten- 
tial $must satisfy 

a24 i a $  a 2 4  v2$ = -+--+- = 0 inthefluid, a+ r ar 8x2 
(2.2) 

with the linearized boundary conditions 

(2.3) 
a$ K$-- = 0 onthefreesurface ( x  = d),  
a2 

where K = d / g ,  

( x  = 0, r < a) ,  (2.4) 

( z  = 0, r > a) ,  ( 2 . 5 )  

( r  = a, 0 Q x Q 1 ) .  (2.6) 

a$ - = 1 
a2 

on the piston 

on the seabed - -  ” - 0 
a2 

3 
ar 
- = 0 onthetube 

We also require to satisfy the appropriate radiation condition, 

d e i k r  cosh kz 

(krjh Gosh kcl 
$------ as r - f o o ,  

wheredissome constant. 

giving 
We may solve Laplace’s equation in the inner (r Q a) and outer (r 2 a )  regions, 

ca 

$ = Z: AnTo(a,r)Z,(z)+[(z-d)+g/w21 ( r  Q a) ,  (2.9) 
n= 0 

where A,, B, are unknown constants and, in the notation of Miles & Gilbert (1968), 

Zo(z) = N;: cosh kz, where NO = &[I + (2kd)-lsinh 2kd], (2.10) 

Z,(z) = N;*cosanz, where Nn = 811 + (2a,d)-1sin2and], (2.11) 
forn 2 1. 
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Here k is the wavenumber related to (0 through the dispersion relation 

02 = g k  tanh kd (also given by lx0 = - ik), (2.12) 

and a, are the positive real roots of 

witha, c ~ l , + ~ ( n  3 1 ) .  

of 1 .  

ga tan ad = - 02, (2.13) 

The Z,(z) (n 2 0 )  form a complete orthogonal set in [0 ,  d ]  with mean-square values 

Note that 
KO( - ikr)  = lniH,(kr), (2.14) 

I,( - ikr) = Jo(kr) ,  (2.15) 

where J ,  is an ordinary Bessel function, I ,  and K O  are modified Bessel functions and 
H ,  is the zero-order Hankel function of the first kind (the usual superscript may be 
omitted without ambiguity as a result of the radiation condition). 

As in Black, Mei & Bray (1971), we have included a particular solution in the inner 
region, which is harmonic and satisfies conditions (2 .3)  and (2.4). 

Following Miles & Gilbert (1968) we now construct 4 in the inner and outer regions 
in terms of a$ /&  a t  the cylindrical interface r = a, 1 6; z < d. 

Suppose 

- a+ = f ( z )  a t  r = a ,  16 z 6 d,  
ar 

(2.16) 

we have also 

- = 0  a+ a t  r = a ,  O < z < l .  (2.17) 
ar 

Hence we may expand a#/ar over 0 6 z < d as 

where 

The representations of $ in the inner and outer regions now become 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

The pressure, and hence q5, is continuous at r = a, 1 s; z < d, so matching the solution 
in the inner and outer regions gives 

(2.22) 

validfor1 6 z 6 d.  
This may be simplified using the formula (Abramowitz & Stegun 1970) 

-I,(a,a) Kh(a,a) +Ih(a,a) Ko(ana) = (a,a)-l for n 2 0. (2.23) 



Wave-energy absorption by n submerged duct 193 

Define 
R, = -[a: a21A(a,a) Kh(a,a)]-* for n, 2 0, (2.24) 

and equation (2.22) then becomes 

(2.25) 
1 

n=O a 

m 

3?,R,Z,(z) = - [ ( d - ~ ) - g / o 2 ] ,  1 G z G d .  

3. Solution 
Miles & Gilbert proceeded to set up an integral equation; however we shall adopt 

the approach of Garrett and construct an infinite system of simultaneous linear eqna- 
tions for the unknown 9,. 

Over 0 < x < 1 we have, from equation (2.6) 

s = O  

Multiply (2.25) and (3.1) by Z,,(z), integrate over region of validity, divide by d 
and add. Thus 

m 

n=O 
C Em,%, = c m ,  ( 3 4  

where 

and 

(3.4) 

(3.5) 

(see appendix A for expressions for D,,, CTn). 

equations, more easily solved by the computer, by writing 
The above is a complex matrix equation which can be reduced to two real matrix 

Sn = U, + ib,, (3.6) 

Note that Em, is real except for n = 0 (since R, = - [&7i-ilc2a2J;(ka) Hh(ka)] - ' ) .  
where an, b, are real, and uncoupling the resulting equation (see Ogilvie 19G3). 

Writing 

where ym, Pm are real (see appendix A for expressions for ym, pm) ,  then from (3.2) we 
have 

E,, = ym + ipm (m 2 01, (3.7) 

m 

C Em, (a, + ibn)  + ( ~ m  + i P m )  (a, + "0) = Cm. (3 .8)  
n = l  

Equate real and imaginary parts to obtain 

(3.9) 

(3.10) 
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If en, 8, are the solutions of 
W 

~ r n e O +  E Emnea = c m ,  
n=l 

then 

and, in particular, 

Thus 

snd 

(3.11) 

(3.12) 

a, = cn + boa,, (3.13) 

h, = -nos,, n = 0,1,2)  ..., (3.14) 

clo = €o+h,so, b, = -aoSo. (3.18) 

(3.16) 

(3.17)  

So, upon solving the two real systems of equations (3.11),  (3.12) (the method 
employed is given in 3 6.3), we can evaluate Pn (n 2 0) and obtain a full solution for 
$ from equations (2.20),  (2.21).  

4. Calculation of added-mass and damping coefficients and energy 
extraction 

4.1. Added-mass and damping coeficients 

It is shown in Newman (1977)  that  the complex force in the i th direction due to a 
sinusoidal motion of frequency w and unit amplitude in the j t h  direction may be 
written in the form 

f , ,  = w2aij + iwb,,, (4.1) 

where aij, bij are the added-mass and damping coefficients respectively) both real and 
dependent on frequency w .  It is also shown that by integrating the pressure over the 
body surface, SOB, 

fi, = PJ  $ j  dfi, (4.2) 
Y B  an 

where 4, is the potential corresponding to  motion in the i th direction and n is the unit 
normal vector on the body surface, directed into the fluid. 

f n  this case the only moveable part of the body is the piston, which is restricted to  
motion in the x direction ; hence only a,,, b,, are non-zero and 

f 3 ,  = w2n3, + iwb,, (4.3) 

(4.4) 

where 9' is the piston surface. (For convenience, a,,, b,, will hereafter be denoted by 
f l 3 ,  b3.1 



Wave-energy absorption by a submerged duct 

Since the motion is of unit amplitude we require 

and thus Q3 is related to the potential q5 defined in $ 2  in the following way, 

using (2.4).  

Hence 

4, = -iwQ 

L 

w2a3 + iwb, = --pw2J Q dS. 

Using the representation of Q in the inner region (2.21), 
Y 

Thus 

4.2. Absorption length and amplitude ratio 

The power absorption length is defined by 

power absorbed by body 
- total power in incident wave of unit frontage’ 

and it can be shown that for the finite depth case (see appendix B) 

1 -  

4( & / k )  b, 2 - _ ~  I ,  = - 
( k - a , ~ ~ ) ~ + w ~ ( b , + d ) ~  ’ 

195 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.1 1)  

(4.12) 

(4.13) 

for a light piston with spring and damper constants E ,  2 respectively. Now 2, may be 
rewritten as 

(4.14) 

giving a maximum value of 
1 h  Edmax = - = - 
k 2n5 

where h is the wavelength of the incident wave, when 
- - 

k = a3w2,  d = b,. 

The result (4.15) agrees with the infinite depth case (Evans 1976). 

(4.15) 

(4.16) 
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Similarly the expression for the ratio of the piston amplitude 5 to the amplitude of 
the incident wave A ,  can be shown to be 

(4 .17)  

which again agrees with the deep water case as d -+ GO, when the group velocity 

Before computing values of the added mass and damping we non-dimensionalize by 

= M p ,  b, = MoA,  (4.18) 

c* --f g/20). 

where 
M = mass of water above piston contained in a cylinder of radius a 

= ?i-u2pd, 

choosing this particular M instead of the mass of water in the tube so that we are 
able to consider the limiting case as the length of the tube tends to zero. 

If we introduce a non-dimensional wavenumber v == w2d/g,  then 

(4.19) 

(4.20) 

Further, we may ‘tune ’ the system to a frequency w, to give 1, a maximum a t  this 
frequency, by assuming we may choose 

- 
is: = a3(w0) w;,  d = b3(w,). 

Then we have 
l a -  1 4v(v$A) ( V i  A,) 
2a 2ka E(pov , -pV)~+v(V~AO+V:A)2]’  

2A 
(tanh kd + kd sech2 k d )  

I f l 2  (A (a) 
I A l  - [ (p0v , -pV)2+v(v~h0+V~A)2]  ’ 

(4.21) 

(4.22) 

(4.23) 

where v, = w t d / g ,  po = p(wo), A, = A(w,). 
So, for eachvalue of the non-dimensionalwavenumber v,we solve the two real linear 

systems of equations given by (3.11), (3.12) to evaluate Fn(n 2 0) and hence p and A. 
Once the variation of p and h with v is known, and a tuning frequency w, is chosen 
we can use (4.22), (4.23) to study the absorption length and amplitude ratio variation 
with v .  

The results obtained are presented and discussed in 9 6.  But first we shall examine 
the limiting case of an oscillating disk in some detail. It is not a practical absorber but 
the problem can be easily solved and the behaviour of the added-mass and damping 
coefficients studied. 
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5. Limiting disk case 
5.1. Statement of problem and solution 

An interesting limiting case of the resonant tube is that of an oscillating disk on the 
sea bed. The approach to the problem is as for the tube, but the fact that we are now 
matching # at  r = a over the whole interval [O, d] produces much simplified results 
providing a better insight into the behaviour of the added-mass and damping coefi- 
cients (the similar curves produced in the disk and tube cases indicate that this 
behaviour is relevant to the tube problem). 

The formulation of the problem is clearly identical with that of the tube case, 
giving now, instead of (2.25) 

00 

9, R,Z,(z) = [ ( d  - g / d )  - z] /a  holding for 0 < x < d. 
n=O 

As before, multiply both sides by ( l / d )  Zm(z) and integrate to obtain 

Thus 
= C ,  with 1 = 0. 

N,t 
where C, = -- (see appendix A), 

9 0  = q, k2ad 

N&+ 
d m - -  o- - c m  (m >, 1)  where Cm = - (see appendix A),  

R m  a: ad 
Hence 

- N;& 9 - - [ - +nik2a2Ji(ka) H;(ka)] 
O -  k2ad 

since H,( ka) = J,( Ica) + iYo( ka), and 

= N;# - I,(ama)K,(a,,a) (m >, 1) .  (1) 
5.2. Added-mass and damping coeficients 

Using (4.11), (4.12) and the fact that t h e F m  are real form >, 1 ,  

b, = 2vpwaN;a Im (9,/k2), (5.10) 

(5.1 1) 
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giving 

7r2a2pw 
b, = - Ncl  J;(ka.) ,  

k2d 

J .  R. Thomas 

(5.12) 

I am indebted to a referee for pointing out that  this problem of an oscillating disk 
may also be solved using a Hankel transformation. This method yields an expression 
for the damping coefficient identical to ( 5 . 1 2 )  and the following expression for the 
added-mass coeficient, 

O0 J:([a) (6 cosh 6d- K sinh [ d )  s 0 t2 ( K  cosh [d  - [ sinh [ d )  
a3 = -2npa2 (5.14) 

where the integral is to be interpreted in the sense of the Cauchy principal value. By a 
suitable choice of contour the integral may be evaluated, giving an expression for the 
added-mass coefficient identical to (5.13). 

We may now non-dimensionalize the result in exactly the same way as in the duct 
case and compute the absorption width and amplitude ratio variabion with wave- 
number for the disk. 

One point to note is that  for frequencies where ka is equal to a zero of J ,  we have 
b, = 0 and, since (see appendix B) the damping coefficient is proportional to the far- 
field amplitude, we may conclude that, for an infinite set of frequencies, forced oscil- 
lation of the piston produces no outward-propagating waves. This is in accordance 
with the results of Black, Mei & Bray ( 1  97 1) where they considered water-wave radia- 
tion by rigidoscillating bodies. However, the first zero of Jl(ka) occurs at ka = 3.83171, 
i.e. 

-=4(:) 2nd or - - - ( )  h 2n a 
h d - 4  2 .  

So, assuming the water depth is 40-50 m, then, even when the diameter of the disk is 
equal to the water depth, the first zero will occur a,t a wavelength of the order of 
30-40m, which is outside the region of interest for wave-energy devices since the 
important energy source lies in waves of wavelengths between 100 and 200m. 

5.3. Behaviour of coeficients as v + 0, v --f co 

After non-dimensionalization, 

(5.15) 

9 (5.16) 
1 N c l n  N,-liTl(ana) K1(ana) 

p = I----  J1( ka) Y1( ka) - 2 
v (kd)2 n = l  

wherev = W 2 d / g .  
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We shall now consider the behaviour of these coefficients as v + 0. First we shall 
remind ourselves of the equations satisfied by v and a,(n 2 I ) ,  

v = kd tanh kd, and tan and i- v = 0, (5.17)) (5.18) 

and, thus, as v -+ 0 we have v --f and a, --f nm. 
Using the limiting forms of J,, Yl for small arguments (Abramowitz & Stegun 1970), 

we have the following behaviour of ,u and h as v --f 0, 

h -+ 7 7 / 4 ( ~ / d ) ~ ,  (5.19) 

4 "  
+ n = 1  

p + 1 -- C I , (nna /d )  K , (nna /d ) /n2 .  (5.20) 

Both h and p tend to finite values as v -+ 0 ,  the series appearing in ,u converging fairly 
rapidly since I,(z) K,(x) N i x - ,  as x --f co. As usual, the absorption length will tend to 
zero as v -+ 0 but the amplitude ratio will tend t o  a finite value. We have, as v --f 0, 
from (4.23) and (5.20) above, 

Now as v --f 00, 

Thus, we have 
V N  kd and u n d N n n / 2 ,  n =  1 , 2  ,.... 

(5.21) 

(5.22) 

Again ,u incorporates a quickly converging series and tends to a finite value. 

5.4. Veri$cution of b, result for disk 

Haskind (1957) and Newman (1962) have shown that the damping coefficient is related 
to the 'exciting force' i.e. the force on the body when it is held fixed in the presence 
of incoming waves. In this case evaluation of the exciting force is straightforward as 
there are no diffracted waves. It can be shown from (B 15) and (B 20)  that  

(5.23) 

where F is the exciting force on the disk, cg is the group velocity and A is the ampli- 
tude of the incoming waves. Now F can be found by integrating the hydrodynamic 
pressure over the piston surface when the piston is held fixed in incident waves, thus 

(5.24) 

where QS = Re{$,e-iwt} is the scattering potential. This is just the incident wave 
potential as there are no diffracted waves. Hence 

(5.25) 

(taking waves incident from .2: = - co since direction is of no consequence here). 
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0 0.5 1 .o 1.5 2.0 

Kd 

FIGURE 2 .  Non-dimensional added-mass coefficient p vs. non-dinicnsional wavenumber 
K d ,  for the disk, for different values of n/d. 

Thus 

- 2nipgaA 
k cosh kd 

- - J,(ka) e- fw t ,  

and, substituting €or P in (5 .23) ,  

b, = J: (ka)  . 
kc, Gosh2 kd 

Now, from (2.10), cg may be written as 

cg = No,  
w cosh2 kd 

(5.26) 

(5.27) 

(5.28) 

(5 .20)  

(5.30) 

(5.31) 

and, substituting for cg  in (5.30) using (5.31), it can be seen that the expression for b, 
agrees with that obtained from the radiation problem given by (5.12). 



Wave-energy absorption by n SubrnPrpd duct 201 

0.2 

0.15 

x 

0.1 

0.05 

0 

Kd 

FIGURE 3. Non-dimensional damping coefficient h us. non-dimensional wavenurnber Ktl. 
for the disk, for different values of a l d .  

0 0.5 1 .o 1.5 2.0 

Kd 

FIGURE 4. Non-dimensional absorption length 1,/2a vu9. non-dimensional wavenumber 
Kd, for the disk, for different values of u l d .  
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l 4  l//’ 
I 
I 

\ 

I 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

0 0.5 1 .o 1 . 5  2.0 

Kd 

FIGURE 5 .  Non-dimensional amplitude ratio ]&/A  I vs. non-dimensional wavenumbor Kd,  
for the disk, for different values of a / d .  

6. Results and discussion 

duct results. 
We shall first examine the results for the disk and then proceed with a study of the 

6.1. The disk o n  the sea bed 

In  each case the results for the disk were plotted for values of a/d  = 0.1, 0.25, 0.5. 
Figure 2 indicates that, as a/d decreases, so the added-mass variation decreases over 
the range of v, and for a / d  = 0- 1 the added mass is fairly constant over the whole range. 
For a /d  = 0.5 the curve begins to rise again slightly near v = 2.0 as the predicted 
asymptotic value is approached. The damping curves shown in figure 3 illustrate the 
decrease of the damping coefficient from its asymptotic value a t  v = 0 until i t  reaches 
its first zero which will occur a t  a value of v > 2 ,  when J,(ka,) = 0. 

We now tune the disk to v,, = 1.0 as in $4, and the results are shown in figure 4. For 
the disk to be a good absorber we require 1,/2a > 1 over some appreciable range of 
values of v. Physically this means that the disk captures all the power in a wave of 
crest length greater than the disk diameter. Now Zdmax/2a = ( 2 h - l  so it would seem 
that, a t  the tuned wavenumber, we require kd < i(cZ/a). However, as explained in 
Srokosz (1979), Z,/2a does not attain its maximum value a t  v,,, but to the left of v,,. 
This can be most easily seen when a/d  = 0.5 in figure 4 and occurs because, although 
1,/2a < ( 2 k z - I  for v + v,,, 1,/2u is still able to rise above its value a t  v,, and lie below 
the curve given by Zdmsx/2a = ( 2 I ~ a ) - ~ .  

While the curve for a/d = 0.26, in particular, seems promising, the amplitude ratio 
curves shown in figure 5 indicate that the disk oscillations are too large to satisfy the 
assumption of small ampl i tde  motion required in the linear theory. The magnitude 
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1 

l/d = 0.8 
0.8 4 

0.6 

0.4 
0 4  

P 

0 0.5 1 .O 1.5 2 0  

Kd 
FIGURE 6. Non-dimensional added-mass coefficient ,u vs. non-dimensional wave- 

number Kd, for the duct with a ld  = 0.1, for different values of l l d .  

of these oscillations can be reduced by tuning to smaller wavelengths or increasing 
the disk diameter, however i t  is not possible to combine these to  make the disk a 
good absorber while ensuring the motion remains within the bounds of linear theory. 
So, as expected, the disk is not a good absorber and, indeed, the main purpose of its 
study was to provide a check for the duct results and to provide analytic expressions 
for the added-mass and damping coefficients, which in many cases behave similarly 
tothosefor theduct. 

6.2. T h e  mouth-upward  duct  

Figure G gives the added-mass curves for fixed a/d = 0.1 when l / d  = 0.4, 0.6, 0.8. As 
for the disk with a /d  = 0.1, the added mass remains fairly constant over the range of 
v ,  and, in each case, the values of the added mass are slightly larger than the mass of 
water in the tube. This is since, as a /d  gets smaller, the piston is effectively having to 
move the slug of water in the tube and hence the added mass will approach the mass 
of water in the tube. (We would expect also an end correction L, as in the case of an 
opcn pipe in an infinite fluid with no free surfaces present, where L = 0-6133a. How- 
ever, this value of L will not apply here due to the pressure of the free surface and 
sea bed.) The damping curves given in figure 7 show some difference from thosefor the 
disk case for larger values of l l d ,  where the damping now rises to a maximum before 
decreasing to the first zero. (The zeros of the damping were found to occur a t  the same 
values that were obtained for the disk: it is not clear why this is so.) 

The added-mass and damping curves for fixed I ld  = 0.5 are shown in figures 8 and 
9. Again, the larger variation in the added mass occurs for the wider duct. The damp- 
ing in each case, although seeming to approach the same value as that  for the disk 
of the same a/d ,  as v + 0, does not fall off as rapidly as that of the disk as v increases. 
Before examining the absorption length and amplitude ratio raiiation with wave- 
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FIGURE 7.  Non-dimensional damping coefficient h vs. non-dimensional wavenumber 
K d ,  for the duct with a/d = 0.1, for different values of l /d .  

FIGURE 8. Non-dimensional added-mass coefficient ,u ws. non-dimensional wavenumber 
K d ,  for the duct with l / d  = 0.5, for different values of a l d .  
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FIGURE 9. Non-dimensional damping coefficient h ws. non-dimensional wavenumber 
K d ,  for the duct with l / d  = 0.5, for different values of a l d .  

FIGURE 10. Comparison of results for added length '?, and damping coefficient D, vs. non-dimen- 
sional wavenumber Kd, with Simon (1981) for Ka = 0.2, Kh = 0.2. - - -, Simon's results in 
infinite depth; --, results in finite depth. 
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FIGURE 11. Non-dimensional absorption length ZJ2a 0s.  non-dimensional wavenumber Kd,  for 
the duct with Z/d = 0.8, v o  = 1.0, for different values of a/d.  

number we shall study the behaviour of the added-mass and damping coefficients as 
the depth increases. By fixing d a l g ,  d h l g  and plotting the added mass and damping 
as functions of d d l g  we should recover the infinite depth results of Simon (1981) as 
wZd/g --f co. However, it is first necessary to relate the damping and added mass to 
the damping coefficient, D,, and the effective added-length term, l, used by Simon. 
This can be done by examining the respective radiation problems. I n  the model used 
here, a piston displacement Re [<eciWt] radiates energy away a t  a rate $w2b, ( ( I 2  while, 
in the radiation problem set up by Simon, a volume flow Re [Qeiwt] in the ductradiates 
energy away a t  a rate $pwKD, ( Q ( 2  (Simon 1981). If we define D,, in finite depth such 
that they correspond to D,,l defined in infinite depth by Simon, then after some 
algebra we find 

Now, using this definition of D,, 2, we should recover the infinite depth values as 
w2d/g  -+ m. Figure 10 gives the variation of D, and l with w2d/g,  when w2a/g  = d h / g  
= 0.2. In  all cases, the values seem to be converging to the infinite depth values of 
Simon (1981). The accuracy of the results decreases as w2d/g  increases and so, for d a l g  
= 0.2, it is not possible to  be confident about results for w2d lg  > 2 say. Note 
that D, approaches its infinite depth value from below, although, forw2dlg < 0.8, D,is 
greater than its infinite depth value. 

Figure 11 shows the absorption length variation for fixed l / d  = 0.8, with tuned 
wavenumber once more v,, = 1.0. It can be seen that widening the duct diameter will 
broaden the curve. The same criterion as for the disk applies in determining whether 
the device is a good absorber; i.e. as a guide we require kd < $(d/a)  a t  the tunedwave- 
number. SO, although the duct could be better tuned, in the case a/d = 0.1 say, 
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FIGURE 13. Non-dimensional absorption length 1,/2a vs. non-dimensional wavenumber 
Kd, for the duct with a/d = 0.25, vo = 1.0, for different values of lid. 
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FIGURE 15. Non-dimensional absorption length 1,/2a 'us. l l d  with ald = 0.25, v,, = 1.0, 

FIGURE 14. Non-dimensional amplitude ratio 1 [ / A  I ws. non-dimensional wavenumber 
Kd, for the duct with altl = 0.25, v o  = 1.0, for different values of l / d .  
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FIGURE 17. Non-dimensional absorption length 1,/2a 'us. non-dimensional wavenumber Kd,  
with a/d = 0.25, l / d  = 0.9 for different values of tuned wavenumber v,,. The dashed curve 
represents the maximum absorption length, ld Lnax /2a. 
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FIGITRE 18. Non-dimensional amplitude ratio / < / A  I vs. non-dimensional wavenumber Kd,  with 
n/d = 0.25, l / d  = 0.9 for different values of tuned wavenumber v,. 

figure 12 indicates that the duct diameter should perhaps be too large in order that  the 
assumptions of linear tlieory be satisfied. 

If we now study the absorption length a t  fixed a/d and vary lid, the results are not 
quite so straightforward. As one might expect, figure 13 shows that a wider band- 
width is achieved for l l d  = 0.9 rather than 0.6, when the duct mouth is closer to the 
surface. But when l / d  = 0.1 the bandwidth is wider than in the previous two cases, 
although the curve does drop off quicker than the curve corresponding to l / d  = 0.9, as v 
increases. On the other hand, the amplitude ratios shown in figure 14 indicate a 
progressive decrease in l ( /A I as l / d  increases, over practically the whole range, and 
certainly near the tuned wavenumber. To understand further what is happening here, 
attention was focused on a fixed value of v and the variation of absorption length 
with l / d  was  studied (figure 15).  

Surprisingly, as l l d  increases from zero, the bandwidth of the absorption length 
curve decreases before reaching a minimum and then increases as the duct mouth 
gets close to the surface. Froin figure 16 it can be seen thatj the amplitude ratio falls 
off rapidly a t  first before levelling off to some extent until the mouth becomes close to 
the surface, when it begins to fall again. Apparently, t,he advantage of the duct is to 
decrease the amplitude ratio considerably but the tube, in some sense, shields the 
piston from the incident wave train, although this may be offset by having the duct 
mouth near the surface. 

The effect of tuning to different wavenumbers may be seen in figure 17. The maxi- 
inuin value of 1,/2a is given by the curve 1,1max/2a = (2ku)-1, shown dotted. Figure 
18 shows how the piston oscillations are reduced as vo increases. When vo = 0.6 the 
ahsorption Icngth I)nntln~itlth is w r y  narrow a n d  the a,mplitude ratio rises markedly 
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above the values where linear theory is applicable. But, when v,, = 1.5, the amplitude 
ratio is greatly reduced, as noted in 56.1, linear theory is valid, and the absorption 
width curve exhibits a broad bandwidth. 

6.3. A note o n  numerical methods 

We require the solution of two infinite systems of real equations. This was obtained 
by truncating the systems after N terms and solving the finite system using a standard 
numerical procedure. Both systems have the same left-hand sides so the matrix of 
coefficients of c,, 8, need only be inverted once numerically. Then, regarding the 
solutions obtained as functions of N ,  we require the limit as N --f GO. By plotting the 
results against A - l  and extrapolating to zero, we may study the convergence of the 
solutions. 

The convergence is slow, being almost linearly dependent on 1 / N  for large N ,  as 
Garrett (1970) noted. The equations were solved with N = 10, in steps of 10, up to 
N = 80 terms. Unlike Garrett, the solution for N = 40 was accurate to within 1% 
and a linear extrapolation using N = 40, 5.0 compared well with a smooth extrapola- 
tion through all the values of hT. Using this linear extrapolation, agreement was found 
to three or four significant figures in general. For smaller values of a/d  and certain 
values of v ,  N needs to  be larger to maintain the accuracy. 

7. Conclusion 
In  this paper a simplified model of an oscillating water column wave-energy absorber 

has been used to study the behaviourof the added-mass and damping coefficients and, 
hence, the absorption length. Expressions for the absorption length and amplitude 
ratio corresponding to those of Evans (1 976) were derived for finite depth, for a general 
axisymmetric heaving body. The limiting case of an oscillating disk on the sea bed 
was also analysed, and while this is not a practical device i t  provided some insight into 
the behaviour of the added-mass and damping coefficients as well as providing a useful 
check on the numerical methods used in the duct problem. 

The results indicate that, unless a/d is large, the added mass shows relatively little 
change over the range of v, while the damping coefficient still retains the zeros found 
in the disk problem, although the presence of the duct can greatly modify the curves. 
The added-mass and damping behaviour with increasing depth is presented, showing 
how these coefficients approach the infinite depth value of Simon (1981). 

The variation of absorption length with wavenumber has been illustrated for both 
fixed a / d  and fixed lid. An unexpected result was that increasing the tube length can 
actually narrow the bandwidth of the curves. For moderate values of l / d  and 2ald the 
linear theory is not really applicable and, although theamplituderatio maybe reduced, 
to some extent, by choosing more appropriate tuning wavenumbers, for the device 
to be a good absorber i t  is necessary for l / d  and 2ald to be quite large, l / d  = 0.9, 
u / d  = 0.4say. 

Thus, such a device situated on the sea bed does not seem practical and better 
results may be obtained by bringing the device closer to the sea surface. However, it 
must be pointed out that devices of this type will not be isolated but will appear in 
arrays where interaction effects can occur which may result in an increase in absorp- 
tion width. 
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Appendix A 
We have 

(A 1) 
1 d  

Dmn = a.T, z m ( x )  z n ( z )  dz, 

giving 

D,, = (N,N,)-h [a,dsina,1cosa,Z-a,dsina,Ecosa,1]/(a~d2-a~d2) (A 2) 

form + n,m,n 3 1; 

(A 3) 1 sin a, h cos a,( Z + d )  
a, h 

form 3 1; 

Do, = D,, = -(~,N,)-~[kdsinhkZcosa,l+a,dcoshklsina,Z]/(a~d2+k2d2) 

forn > 1; 

(A 4) 

(A 5) 

(A 6) 

1 h 
2 d  

[ sinh kh cosh k(Z + d )  
kh 

D o o = - - N c l  1+ 

Now 

ad 
giving 

N;B sinhkh h 
O -  ka  kdsinhkd d 

c ---[  + - sirih kl] , 

1 sina,h h c, = - - - sin a, 1 

form 1. 
We have written, in equation (3.7),  

where y,, /Irn are real, form > 0;  now, from (3.3), 

Thus 

p, = %2 (Jf(ka)  + Y;(Ea))-l. 
ink a 

Note: For the disk case, we have 1 = 0, and so 
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Appendix B 

the duct. The equation of motion of the piston is 
Absorption width in Jinite depth. Consider the full problem of waves incident upon 

mc+Z<+Ec = F,, (B 1) 

5 = Re{(e-iwt} (B 2) 

FT = F,j -I- Fr (B 3) 

where$, are the spring and damper constants respectively, FT is the hydrodynamical 
force on the piston, and 

is the displacement of the piston. 
Now 

where Fa is the force on the piston when i t  is held fixed in the presence of incoming 
waves (the scattering problem), and F, is the force on the piston when it is oscillating 
with displacement c in the absence of incoming waves (a radiation problem). 

And, by definition, 
F, = f33te-iwt (real part understood), (B 4) 

(B 5 )  

(B 6) 

wheref,, is defined in equation (4.1), i.e. 

F, = (w2a3 + iwb,) (e-io’t. 

Fa = Re{[@ - (m + a,) w2)  - iw@ + b3)] (eciUt} .  

Substituting in equation (B 1)  we obtain 

To calculate Fa. The Haskind relations show that the exciting force depends only 
on the far-field potential of the radiation potential, and is given by 

where @ = Re{$e-i**} is the radiation potential, defined as in $2, and Yo is a control 
surface, a cylindrical surface, r = R (excluding base and top), with normal directed 
towards the origin. The incident wave potential is given by Q0 = Re{4,e-iwt},where 

gA cosh kz eikz 

w coshkd ’ 
$o = -- 

representing a wave of amplitude ] A  1, wavenumber k ,  in water of finite depth d,  and 
this may be written 

gAcoshkx 
$o = -- e,imJ,(kr) cosmO 

w COShIcd,=~ 

where e0 = 1, en, = 2 (m 2 l), and Hi:), H$ are Hankel functions of the first and 
second kinds respectively. 

As r -+ 03, the radiation condition imposed on 4 gives 

where A, is some (complex) constant. 
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So taking r = R as control surface and letting R 3 co, the expression for F,, reduces 
to 

where use has been made of the asymptotic forms of the Hankel functions for large 
arguments (Abramowitz & Stegun 1970). 

Therefore 

or 

_ _  where cg is the group velocity in depth d. 

c j ) ,  it can be shown that 
Now, applying Green's theorem to q5 and # (q5 represents the complex conjugate of 

where Yo is the control surface previously defined and, as R --f 00, 

cosh kx 
cosh kd' 

q5 N A,H$,"(kR) - 

- cosh kx # N A J q ' ( k R ) -  
cosh kd' 

and, substituting for #,$, (B 16) reduces to 

~ P W ~ N ,  
IArl2 b, = - 

cosh2 kd 

If we use the expression for Fd in (B 15), (B 6) becomes 

The power absorbed by the system is the mean rate a t  which work is done on the 
system by the fluid, 

p = gJo2"'" [FTdt = t ~ ~ Z 1 c 1 ~ ,  (B 22) 

and the power per unit frontage of the incident wave is 

Po = (wave energy density) x (group velocity) 

= $pgJA12cg. (B 23) 
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Hence the absorption width I, is given by 

P 
1, = 

Substituting for [ [ / A [  from (B 21) and using (B 20) to eliminat'e [ A , [ ,  this becomes 

Note that for deep water we have w2 = gk and the deep water result is obtained 
(Evans 1976). 
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